VFRC in the News

VFRC Publishes Co-Authored Article

An article co-authored by the VFRC has been published in Biology and Fertility of Soils. “Nanotechnologies for increasing the crop use efficiency of fertilizer-micronutrients” addresses issues related to micronutrient deficiency in soils – and, thus, food crops. The paper proposes a novel model for enhancing micronutrient uptake efficiency and food quality. The article is available online here

 

Abstract

Billions of people and many soils across the planet suffer from micronutrient (MN) deficiencies impairing human health. In general, fertilization of deficient soils, according to soil test, with MNs alone and in combination with nitrogen, phosphorous, and potassium (NPK) baseline treatment increases crop yield. The soil applied fertilizer-MN use efficiency (MUE) by crops is <5 % due to a lack of synchronization between the fertilizer-MN release and their crop demand during growth. Nanotechnology and biotechnology have the potential to play a prominent place in transforming agricultural systems and food production worldwide in the coming years. MNs added in microcapsules and nanocapsules, nanomaterials (NMs), and nanoparticles (NPs) are taken up and translocated within plants when grown to maturity, increasing crop yield and MN concentration in plants. Noteworthy, many of the effects of NPs and NMs on crop yield and quality, human health, and associated environmental risks remain to be explored. Increasing MUE requires synchronizing the release of nutrients from fertilizers with crop demand during the growing season. Development of intelligent MN fertilizer delivery platforms (IMNDP) may be possible on the basis of elucidating communication signals between plant roots and soil microorganisms. Important benefits from the development and farm adoption of intelligent MN delivery platforms include increased MUE, reduced fertilizer use, and minimal toxicity and environmental impacts. This article proposes for the first time a novel model for IMNDP to enhance MUE and food quality by enabling the synchronization of MN release from fertilizers according to crop demand.